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Abstract— Robust and accurate localization is an essential
component for robotic navigation and autonomous driving. The
use of cameras for localization with high definition map (HD
Map) provides an affordable localization sensor set. Existing
methods suffer from pose estimation failure due to error
prone data association or initialization with accurate initial
pose requirement. In this paper, we propose a cost-effective
vehicle localization system with HD map for autonomous
driving that uses cameras as primary sensors. To this end,
we formulate vision-based localization as a data association
problem that maps visual semantics to landmarks in HD map.
Specifically, system initialization is finished in a coarse to
fine manner by combining coarse GPS (Global Positioning
System) measurement and fine pose searching. In tracking
stage, vehicle pose is refined by implicitly aligning the semantic
segmentation result between image and landmarks in HD maps
with photometric consistency. Finally, vehicle pose is computed
by pose graph optimization in a sliding window fashion. We
evaluate our method on two datasets and demonstrate that
the proposed approach yields promising localization results
in different driving scenarios. Additionally, our approach is
suitable for both monocular camera and multi-cameras that
provides flexibility and improves robustness for the localization
system.

I. INTRODUCTION

Vehicle localization (i.e., position and orientation esti-
mation in the world coordinate system) is an important
component of the autonomous driving system. For exam-
ple, accurate and robust localization can provide useful
information of decision making and perception module for
autonomous driving. Although the inertial navigation system
based on IMU and RTK-GNSS can obtain enough accuracy,
it is likely to fail in scenarios with poor GNSS signal, such
as tunnels and skyscraper region [1]. Also, it is not cost-
effective for massive production.

In recent year, many works employ a offline-built prior
map to solve the vehicle localization problem [2] [3] [4].
The prior map is usually applied as a semantic or geo-
metric representation of the scene for autonomous driving.
Lidar point [5] and vision feature point [6] are two main
categories of point cloud-based prior map. Although point-
cloud map can provide sufficient localization accuracy, it
is environmental sensitive and difficult to provide robust
localization after a long temporal period. Also, point-cloud
map can not scale due to its memory requirement. Compared
to point-cloud map, vector-form HD map contains precious
and rich semantic geometry information. HD maps are highly
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Fig. 1. Runing graph of vision localization with HD map.

structured, organized as entities with geometry and attributes.
Several works explore the localization method based on
HDMap [3], [4], [7]. However, data association is error prone
or the localization system is not complete.

To address the aforementioned problems, the goal of our
method is to provide a robust and accurate vision-based
localization system. We introduce a coarse to fine vision
localization by combining vector-form HD map and image
semantic information. In system initialization step, a coarse
initialization is provided by car-equipped GPS and then
refined by exhaustive pose searching. In tracking stage,
pose is estimated by aligning image semantic perception
with landmarks of same semantic meaning in HD map.
Specifically, given an image or multiple images, semantic
segmentation result of entities in HD map is firstly ob-
tained by deep learning method. Based on the segmentation
result, a cost map is built by utilizing distance transform
like function [8]. The minimization cost can be defined as
projection photometric error of landmarks on the cost map.
With additional wheel odometry information, the final pose
is computed by pose graph optimization in sliding-window
scheme. Finally, the lost recovery module is responsible
for system re-initialization when failure happens in tracking
stage. The proposed system running graph is shown in
Figure. 1.

To summarize, our main contributions are:
• By leveraging semantic segmentation and HD map, we

propose a complete vision localization system which in-
cludes initialization, tracking and lost recovery modules.

• Our solution is flexible to handle both monocular cam-
era and multi-camera system.

• We evaluate our method on two datasets and demon-
strate that our method yields promising localization
results in different driving scenarios.
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Fig. 2. Overview of the proposed vision localization system. Based on the prior map, low-cost GPS, wheel odometry input and camera signals, the 6-DOF
pose can be estimated at centimeter-level accuracy.

II. RELATED WORK

Recently, there are many research works on vision-based
localization with a prior environment map.

Point cloud map vs Vector-format map Prior map
in localization can be categorized into pointcloud based
map and vector-format map. The pointcloud map can be
constructed by lidar or camera as sensors. Compare to point
cloud map, compact vector-format HD Map is lightweight,
easy to deploy and update. In order to extend the local-
ization range, SuperPoint feature point map and semantic
segmentation feature point map are both used for vehicle
localization in [9]. By using lidar point cloud map, camera
pose in monocular localization system, is calculated by
finding correspondence between 2d lines in image and 3d
lines in lidar map [10]. Hierarchical localization approach
applies a different paradigm to finish vision localization task
by introducing image retrieving into localization pipeline.
For example, in [11], by matching the query image with
the database images using global image feature, the corre-
spondence between feature points of the image and the prior
environment feature points map is obtained to estimate pose
of query image. However, these methods are only suitable
for indoor or small scale non-dynamic scenes. Many works
exploits sparse semantic HD Maps in semantic localization
[4], [12]. Localization task is divided into two part in [3]:
ego-lane identification and in-lane localization. The dash lane
end point from map and image are used to localize vehicle
to right position of the lane. However, only dashed lane used
limits the localization application scenarios.

Feature-based method exploits low level geometry fea-
tures or high level semantic features in the environment
to build the association between image and map. Geom-

etry feature includes point [6], line [10] and plane [13].
Camera pose can be estimated from the matching between
extracted image feature and map. Examples of geometry
features include ORB, SIFT, SURF, SuperPoint, LBD, etc.
These geometry features provide distinguishing descriptions
for matching task [14], [15]. However, they are not robust
to environment variation, such as scenario changing from
day to night or winter to summer. Therefore, they can
not perform well for long-term localization. Compare to
geometry features, semantics representation are alternative
and widely used for localization in autonomous driving. Such
representations include lane marking, curb, pole and so on
[7], [16]–[18].

Direct method does not require explicit keypoint detectors
or feature descriptors. It can naturally sample pixels from
across all image regions that have intensity gradient. For
example, inter-frame pose is estimated based on the image
alignment of image gradient points [19]. Recently, edge
features are further used to produce distance transform image
for pose optimization [20]–[22].

Our approach is closely related to monocular localization
with HD map [4]. In [4], image features of elements in
HD map are extracted by semantic segmentation. Distance
transform operation is applied on binary segmentation result
of each element in HD map to generate cost image for pose
optimization. Finally, cost of re-projecting map elements on
cost image according to initial pose is used to optimize the
camera pose step by step. However, approach in [4] is not
a complete localization system which only concludes vision
tracking module. The initialization step and lost recovering
module, which are essential components for localization
system, are not described. Its 6-DOF optimization strategy
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may produce estimation error when the image information is
not enough to constrain vehicle pose. The proposed system
supports multi-camera sensors setup, continuous localization
is performed even when some of the cameras are blocked.
Furthermore, semantic feature and robust strategy are used
to make the system can run in the mapped environment with
challenging conditions.

III. METHOD

Given an image or multiple images I = {Ii}N
i=1,N ≥ 1

captured from an autonomous driving system, with a HD map
M, the vision-based vehicle global localization is to compute
6 DoF vehicle pose Twb. The map is defined as a set of
meaningful landmark M = {Ec}Cc=1. The coordinate systems
include: camera coordinate system c, vehicle baselink b
and HD map world coordinate system w, i.e. navigation
coordinate system. Vehicle coordinate is FLU system, i.e. x
axis points to forward direction, y axis points to left direction
and z axis points to up direction. Our framework consists
of three major components: initialization, tracking and lost
recovery. The system outputs 6DOF vehicle pose relative to
the map based on the input from camera, HDMap, low-cost
GPS and wheel odometry. Fig. 2 gives the overview of our
framework.

A. HD Map
High precision map in autonomous driving, is usually a

simple and flexible environment structure representative of
the driving scenario. We use map elements {Ei}M

i=1 lane-
markings (LA), pole-like objects (PO), signboards (SB) in
vehicle localization. These elements are described by suc-
cessive ordered three dimensional points collection in HD
map. The graph in tracking part of Fig. 2 visualizes above
mentioned semantic elements. In localization system, map
elements can be queried by current vehicle position and
a given search radius. For queried landmarks, we sampled
points with a fixed length interval as landmark representative.

B. Semantic Segmentation and Post-Processing
In order to find correspondence between HD map elements

and image, semantic segmentation is applied to extract
semantic features of image. We propose a lightweight deep
learning network which can provide efficient segmentation
results. Typically, the backbone is Resnet-18 [23] and pre-
trained on Cityscape dataset [24]. The network is a multi-
head structure, each head is a binary segmentation of one
element (LA, PO, or SB) in HD map for localization.

The vehicle pose estimation is achieved by non-linear
optimization using semantic segmentation maps. We use
different post-processing methods for semantic segmentation
of different elements in HD map. Given segmentation results
of lane and pole, erode and dilate operations are used for
gradient image generation. For signboard landmark, Laplace
transform is applied to extract edge information, then mor-
phology operation is used to obtain smooth gradient image.
Figure. 3 shows the difference of cost image between dis-
tance transform and morphology operation used by proposed
method.

Fig. 3. Comparison between distance transform and morphology operation.
Left: segmentation image of lane markings; Middle: cost map based on
distance transform; Right: cost map with morphology operation.

The cost map generated by morphology is easier to make
the pose optimization converge to the right result. Finally, the
processed segmentation results are converted in the range of
[0,1]. We define the post-processed segmentation results by
Is.

C. Initialization

The purpose of initialization module is to obtain rela-
tive accurate pose estimation in map coordinate system for
successive pose tracking step. We introduce a robust and
accurate initialization method in a coarse to fine manner.
Specifically, a coarse initial pose Twb is computed by two
valid GPS records. Since vehicle can be in still status, the
distance of two GPS point is set to a moderate value. The x
and y plane coordinate of vehicle are set to the second valid
point. And z coordinate is obtained based searched near map
ground elements. Also, the roll angle θx and pitch angle θy
of vehicle are set as zero. The yaw angle θz is set to the
direction of two selected measurements. In order to get a
high rate of successful initialization and more accurate initial
pose result, the coarse initial pose is refined by exhaustive
pose searching in a pre-defined grids.

The searching and optimization cost is defined by the
sum of photometric residual [19] of all semantic landmarks,
which can be written as:

cost =
n

∑
i=0
‖Is(π((Twb ∗Tbc)

−1Pw))−1.0‖2 (1)

In Eqn. 1, Pw is the 3d world coordinate of elements {Ei}
in the map M. Tbc is the camera extrinsic parameters relative
to vehicle baselink. π is projection function based on the
camera model. We use different search parameters, search
step and range, for different pose freedom. For example,
the search step and range for vehicle lateral position are set
to 0.2m and [-10m, 10m], which covers the error tolerance
of car equipped GPS. Finally, the pose combination with
minimum cost will be considered as the pose of the current
initialization frame. The efficient implementation is achieved
by CUDA acceleration.

D. Tracking

Given an initial pose, in tracking stage, vehicle pose is
estimated based on the alignment between semantic feature
and prior map. The tracking module can be divided into three
steps. Firstly, vehicle pose T k+1

wb of frame k+1 is predicted
based on pose estimation T k

wb at time k and other sensor input
such as vehicle wheel odemtry measurement T k→k+1

b by:
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T k+1
wb = T k

wb ∗T k→k+1
b (2)

If the driving scenario meets the longitudinal constrain
setting, a cropping local map from the global map step
is performed. Otherwise, a longitudinal position correction
process is applied first.

Cropping local map from the global map Map elements
(LA, PO, and SB) are queried from the global map in a pre-
defined short range using current coarse vehicle pose T k+1

wb .
Then the queried local map is applied for drift-free vision
localization. Map element E are projected back to image
points P. In order to obtain an accurate pose optimization,
points in P are uniformly sampled in the image space.

Longitudinal position correction The longitudinal local-
ization could suffer significant drift after a long period of
time, in the case that the driving scenario does not meet
the longitudinal constrains. For example, it happens when
the queried lanes are (1) parallel to each other, (2) straight
forward, and (3) there are no signboards or poles to restrict
the vehicle’s longitudinal translation in the environment. GPS
signal is then used to update longitudinal localization of
the vehicle pose T k+1

wb . Such longitudinal position correction
mechanism is able to avoid the drift of the longitudinal
localization in poor environmental conditions, especially for
a long period of time.

Secondly, the 6 DoF vehicle pose T k+1
wb is refined by

image alignment with HD map elements. A cost map is built
based image semantic segmentation and morphology opera-
tions. The alignment is solved by a non-linear optimization
(Levenberg-Marquardt (LM) [25]). In the case that there are
missing vertical landmarks (e.g., signboards or poles) in the
scene, θy, θz, ty and tz of T k+1

wb are computed by, θy, θz and
ty are firstly estimated and then θy and tz are optimized later.
θx and tx are not included due to that the roll angle is usually
very small when the vehicle is moving on a flat ground and
longitudinal displacement of the vehicle is not observable
when the vehicle and queried lanes are parallel to each other.
In addition, to compromise that roll angle is missing in the
optimization, vehicle rotation is then fine-tuned by a brute
force search using a substantial range. Search interval of the
rotation is set to 0.5 degree.

Lastly, in order to get a smoother pose for the planning
module and to advance the robustness of the localization
system, a pose graph is applied with a sliding window. A
well-tracked frame is included in the optimization window.
If the window size exceeds a threshold, a frame from history
will be excluded from the window according to the vehicle
state. For example, if the vehicle odometry measurement is
close to zero, the second newest frame is picked, otherwise
the oldest frame is used.

In pose optimization, the factor graph has two components.
The first is the prior pose factor of each frame which
constrains its prior distribution of vision alignment. The
other is the wheel odometry factor which establishes the
connection between the adjacent frames to ensure the smooth
pose output. The total residual of pose graph optimization is

Fig. 4. Example of optimization by projecting HD map elements to an
image. Initial pose projection is in red and optimization result is in green.

shown in Eqn. 3. The G2O [26] framework is used for the
optimization process.

T = argmin ∑
i, j∈w
‖ln(Ti(T ∗i )

−1)∨‖2 +λ‖ln(T−1
j TiTi j)

∨‖2

(3)
T ∗i is the prior pose from semantic alignment and Ti j

can be derived from measurement of wheel odometry. A
localization confidence is computed in the pose estimation
to evaluate the localization status. A lost recovery module is
activated when the localization fails.

E. Optimization

Details about gradient of loss function are derived in fol-
lowing equations. Jacobian of error relative to the optimized
state is usually used to accelerate the process for non-linear
optimization method (e.g., Gauss-Newton or LM):

δerror
δε

=
δ Is

δu
δu
δ pc

δ pc

δε
, (4)

where error is the projection error of the cost map, δε

denotes the perturbation of vehicle pose, u is the image co-
ordinate and pc is the point in camera coordinate system. In
order to support multi-camera observations, that optimization
state is vehicle pose rather than camera pose. The camera
extrinsic parameter Tbc is applied for the transform between
vehicle and camera coordinate systems. Camera extrinsic
parameters are not included in optimization state. The last
term of Eqn. 4 when estimated state is 6 DoF pose can be
further written as:

δ pc

δε
=

δTcb(Twb ∗Exp(δε))−1Pw

δε
(5)

δ pc

δε
=−

[
I3 −[pc]×

]
Ad(Tcb), (6)

where [pc]× is skew-symmetric matrix of pc and Ad(Tcb)
is the adjoint of Tcb. In order to support optimization with
multi-camera observations, vehicle pose rather than the cam-
era pose is used as the optimization state. Also, Lie Algebra
is used in the transform representation for the 6-DOF pose
optimization.
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Fig. 5. Examples of alignment between HD map and image semantic
segmentation. (a) An accurate alignment; (b)-(g) Alignment results under
perturbation of freedom: roll, pitch, yaw, x, y and z. Semantic segmentation:
freespace (yellow), lane markings (organ and purple). Projection from HD
map: lane markings (green) and signboard (cyan).

Nonholonomic pose freedom estimation including 3 DoF
pose estimation and 2 DoF pose estimation exist in the
localization system. Therefore the jacobian of photometric
error relative to the vehicle pose expressed by Euler angle
and translation needs to be derived.

pc = Rcb((Rwb)
−1(Pw− twb))+ tcb (7)

Rwb and twb are the rotation part and translation part of
vehicle pose respectively. The translation part of jacobian is
list in Equation. 8.

δ pc

δ twb
=−Rcb(Rwb)

−1 =−Rcw (8)

Rwb is represented in Z-Y-X rotation order. The jacobian
of pc relative to yaw can be derived.

δ pc

δθz
= Rcb

δ (Rwb)
T

δθz
(Pw− twb) (9)

where the θx and θy are the same principle as θz. Based on
above derived jacobian, separate Euler angle and translation
part can be optimized. All optimization process are divided
into two steps. The first step is the optimization with robust
kernel in order to suppress outliers. The second step is the
optimization without robust kernel to obtain higher estima-
tion accuracy by removing observations with large error in
first step. Optimize result of single image is shown in Figure.
4.

F. Lost Recovery

However, the system may be lost in the following three
situations: (1) vehicle is out of the operation domain of the
HD map; (2) The total number of pose optimization failure

exceeds a threshold; (3) The number of consecutive frames
with severe occlusion exceeds a threshold (e.g, This happens
in situation of traffic jam in which semantic map elements are
totally invisible). The tracking confidence calculation mod-
ule will determine system status based on above statistical
indicators. When localization system is in lost status, lost
recovery mode is activated. The pose of a lost frame is
replaced by a back-up pose which is inferred from the wheel
odometry, i.e. the pose before optimization. Given the next
frame, in order to activate the tracking stage, the system turns
into the initialization status again.

IV. EXPERIMENT

The proposed algorithm is evaluated on two datasets. The
first dataset contains around 30 kilometers elevated structured
scene in Shanghai, provided by a third party map supplier.
The map elements include lane markings, signboard and
poles. Due to the compact environment representation in
vector format, the storage size of the map is of KB level. The
localization system is evaluated in many scenarios, including
various weather condition, light intensity and different routes.
The second dataset is the public Kaist dataset [1]. Because
Kaist dataset does not provide semantic map which is neces-
sary for proposed algorithm, the stereo camera data and high-
precision localization pose from Lidar and INS are used to
build a semantic landmark map. Qualitative and quantitative
experimental results are used to evaluate the accuracy and
robustness of the method.

A. Qualitative Result

A accurate localization ensures that the projection of map
elements on image is completely consistent with the semantic
perception (e.g, Fig. 5 (a)). Figure. 5 lists examples of
alignment between HD map and image semantic segmen-
tation. Results of (b)-(g) are the alignments under small
perturbations from vehicle pose used in (a). The amount of
angle perturbation is 2 degrees and translation perturbation
is 1 meter.

We can see that the projection of HD landmarks changes
largely with perturbations of pitch, yaw, y and z. In contrast,
the projection results are less influenced by roll angle and ve-
hicle forward direction perturbations. Also, since the imaging
scale is closely related to the vehicle height, lane markings
projection will expand to image boundary or shrink to the
image center with the wrong vehicle height. Therefore, roll
angle and vehicle longitudinal position are not included in
optimization stage if there are no signboards or poles present.

Projection results of Shanghai dataset and Kaist dataset
are shown in Figure. 6 and 7. For instance, results of
different scenes are included in Fig. 6: (1-2) curve road;
(3) long straight road in sunny day; (4) rainy; (5) windshield
wiper blocks part of the image; (6) diverging ramp; (7) low
illumination; (8-9) traffic jam. Our vision localization system
achieves robust results on these scenarios.
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Fig. 6. Qualitative results on Shanghai dataset. Projection results of different scenes: (1-2) curve road; (3) long straight road in sunny day; (4) rainy; (5)
windshield wiper blocks part of the image; (6) diverging ramp; (7) low illumination; (8-9) traffic jam.

Fig. 7. Qualitative results on Kaist dataset. Left: vector format landmark hdmap and projection result. Middle and right are projection results of two
different scenes.

TABLE I
PERFORMANCE EVALUATION ON SHANGHAI DATASET

Scenario frame number Init Success Rate 3D translation(m) 2D translation(m) rotation(deg)
max mean median lateral longitudinal mean

sequence1 2470 92.20% 1.37 0.35 0.30 0.21 0.12 0.50
sequence2 4312 94.24% 1.22 0.46 0.43 0.24 0.23 0.43
sequence3 7490 85.46% 1.42 0.15 0.13 0.09 0.07 0.38
sequence4 3596 88.79% 1.22 0.35 0.32 0.21 0.17 0.47
sequence5 2289 73.64% 0.63 0.29 0.26 0.22 0.05 0.51
sequence6 11265 89.40% 2.59 0.35 0.30 0.21 0.18 0.46
sequence7 9297 90.93% 1.34 0.33 0.29 0.20 0.16 0.64

? This initialization success rate equals initialization success frame within 10 frames / total frames in a sequence.
? The camera of Sequence 3 is a wide angle camera with 120 degree FOV. Others are with 42.5 FOV.

B. Quantitative Evaluation

Because of the encryption issue, the third-party map can
not exactly match the high-precision trajectory of Novatel,
a GNSS inertial navigation system. The relative pose error
(RPE) is used as the evaluation metric of localization ac-
curacy. Due to that the lateral and longitudinal localization

accuracy are more critical than other metrics. These two
errors are reported in the experiments. We use EVO [27]
as the accuracy evaluation tool. The frame interval is set to
5, about 12 meter with image frequency of 10Hz and the
vehicle speed is around 80 km/h.

Localization accuracy evaluations of several data se-
quences are reported in Table. I and Figure. 8. In the
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Fig. 8. Lateral and longitudinal localization error of Sequence 1.

Fig. 9. Example of that the HD map is not updated timely. For example,
several traffic signs (top-left and top-right rectangles in cyan) are missing
in the scene.

experiments, wide camera (FOV of 120 degree) is used in
sequence 3 and other sequences are with camera having
FOV of 42.5 degree. Mean rotation error is below 1 degree.
Lateral error and longitudinal error are about 20 cm. If the
localization is successful within 10 frames by initializing
from any frame in sequence, this frame will be labeled as
initialization success frame. The initialization success rate
can be calculated through manual labeling and observation.
Our proposed localization initialization strategy achieves
about 90 percent success rate. The failure of initialization
is mainly due to the poor GPS signal caused by signal
blocking. In addition, localization accuracy of sequence 3
is improved because more semantic elements are captured in
lateral direction by wide angle camera.

C. Running Time Analysis

Table. II shows the running time of different modules
(without segmentation) in the tracking stage. KD-Tree is used
for querying landmarks from urban scale map to improve
searching efficiency. The most time-consuming step is the
image post-processing, i.e. the process of gradient field
construction. With machine setting of i7-8700k CPU and
GTX 1050 TI GPU, localization running frequency is near
100Hz.

Fig. 10. Examples of multi-camera (e.g., front and rear) vision localization.
(a) Both front and rear cameras are present. (b ) Front camera is disable in
the system.

TABLE II
RUNNING TIME STATISTICS.

module time(ms)
image post-process 6.24
map query 0.73
pose optimization 1.76
pose search 0.60
total track time 12.05

D. Change of the Scenario

The HD map usually can not be update timely. While
our proposed algorithm is robust to small-scale urban envi-
ronment change. Also, our method is able to determine the
change region of the map, which is significant to the localiza-
tion and mapping applications. Figure. 9 shows the signboard
layout is changed in the driving scene. Our approach can (1)
achieve robust localization and (2) report updated region in
the map according to the misalignment between camera and
the map.

E. Multi-cameras Support

The front camera with field of view of 42.5 degree and rear
fisheye camera (FOV of 195 degree) are used as our sensor
setup of multi-camera localization experiment. In order to
simplify the calculation, a raw fisheye image is transformed
into a pinhole image. Figure. 10 illustrates the localization
results by using both cameras and only using the rear camera
to simulate that the front camera is disable. It shows that even
if the forward looking camera is out of function, successful
localization result can still be obtained. As a result, the multi-
cameras setup improves the robustness and the accuracy of
a localization system.

V. CONCLUSIONS

In this paper, we propose a vision-based localization sys-
tem by using vehicle wheel odometry, ordinary car-equipped
consumer level GPS, HD Map and cameras. According to
the formulation, our system is able to handle both monocular
and multi-camera sensor settings. We also demonstrate that
our system is robust to different environment conditions
and the change of driving scenarios, and achieves accurate
localization results. In future work, we will introduce IMU
into localization system to build a visual inertial odometry
and GNSS-IMU inertial navigation system. The pose output
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of VIO system and INS system will be effectively fused with
the localization result of our algorithm to form a practical
low-cost mass-production localization system.
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[26] G. Grisetti, R. Kümmerle, H. Strasdat, and K. Konolige, “g2o: A
general framework for (hyper) graph optimization,” pp. 9–13, 2011.

[27] M. Grupp, “evo: Python package for the evaluation of odometry and
slam.” https://github.com/MichaelGrupp/evo, 2017.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 141 submitted to 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Received March 5, 2021.


